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Abstract: - By extending definition interval of the classical Bernstein basis functions to be dynamic, a class of 
Bernstein basis functions with a shape parameter is constructed in this work. The new basis functions are 
simple extension of the classical Bernstein basis functions. Then the corresponding Bézier-like curve is 
generated on base of the introduced basis functions. The new curve not only has most properties of the classical 
Bézier curve, but also can be adjusted by altering value of the shape parameter when the control points are 
fixed. Because the proposed curve is a polynomial model of the same degree and having most properties of the 
classical Bézier curve, it has more advantages than some existing similar models. 
 
Key- words: Bernstein basis functions; Bézier curve; the same degree; shape adjustment; shape parameter. 

 
1 Introduction 

As an important geometric modeling tool, Bézier 
curve has been widely used in Computer Aided 
Geometric Design (CAGD) and Computer Aided 
Design (CAD). However, when the control points are 
given, shape of the classical cubic Bézier curve 
cannot be changed. With the development of 
geometric design industry, shapes of curves often 
need to be changed freely. For relieving the default 
of the classical Bézier curve, the Bézier-like curves 
with shape parameters have been paid more and 
more attention by many researchers. 

Because the Bézier curve can be naturally defined 
after the basis functions are determined. Therefore, 
constructing the basis functions with shape 
parameters becomes the most effective way for 
establishing Bézier-like curves with shape 
parameters. At present, in order to introduce shape 
parameters to the basis functions of Bézier curve, the 
commonly used method has two kinds. One is to 
construct non-polynomial basis functions with shape 
parameters based on trigonometric or hyperbolic 
functions, such as [1-6]. Another is to construct the 
high-degree polynomial basis functions with shape 

parameters by increasing the degree of the classical 
Bernstein basis functions, such as [7-11]. Although 
the Bézier-like curves generated by those methods 
can effectively realize shape adjustment by altering 
values of the shape parameters, the structure 
complexity is thereupon increased. The polynomial 
Bézier-like curve with multiple parameters of the 
same degree [12] was a practical method, but the 
curve did not have the strict symmetry that the 
classical Bézier curve has. Although the polynomial 
Bézier-like curve of degree n with n-1 shape 
parameters [13] satisfied the same properties with the 
classical Bézier curve, value range of the shape 
parameters of different order curve are diverse from 
each other would cause users with confusion.  

Is there a simpler method for constructing basis 
functions describing Bézier-like curve with shape 
parameters that has most properties of the classical 
Bézier curve? Aiming this problem, the main purpose 
of this work is to present a simple method for 
constructing Bernstein basis functions with a shape 
parameter of the same degree. A class of cubic 
Bernstein basis functions with a shape parameter α, 
named cubic α-Bernstein basis functions, is 
constructed through extending definition interval of 
the classical cubic Bernstein basis functions from 
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[0,1]  to [0, ]α (0 1)α< ≤ . On base of the cubic 
α-Bernstein basis functions, the α-Bernstein basis 
functions of degree n ( 4)n ≥  are generated by 
recursion property of the classical Bernstein basis 
functions. Then the corresponding Bézier-like curve, 
named α-Bézier curve, is naturally defined on base of 
the α-Bernstein basis functions. The proposed 
α-Bézier curve has most properties of the classical 
Bézier curve, and its shape can be adjusted by 
altering value of the shape parameter when the 
control points are fixed.  

The rest of this paper is organized as follows. In 
Section 2, the α-Bernstein basis functions are 
constructed, and some properties of the basis 
functions are given. In Section 3, the corresponding 
α-Bézier curve is defined. Some properties of the 
curve, effects of the shape parameter on the curve 
and continuity of the curve are discussed. A short 
conclusion is given in Section 4. 
 

2 The α-Bernstein basis functions 
2.1 Construction of the basis functions 
Generally, the classical Bernstein basis functions can 
be expressed as follows [14], 

,
!( ) (1 )

( )! !
n i i

n i
nB t t t

n i i
−= −

−
, 

where 0 1t≤ ≤ , 0,1,2, ,i n=  . 
The classical Bernstein basis functions have the 

following properties, 
(a) Nonnegativity: , ( ) 0n iB t ≥  ( 0,1,2, , )i n=  . 
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0

( ) 1
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n i
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B t
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Besides, the classical Bernstein basis functions 
have the recursion property as follows, 

, 1, 1, 1( ) (1 ) ( ) ( )n i n i n iB t t B t tB t− − −= − + , 
where 0 1t≤ ≤ , 0,1,2, ,i n=  , and setting 

1, 1 1,( ) ( ) 0n n nB t B t− − −= ≡ . 
In order to construct a class of Bernstein basis 

functions with a shape parameter α, a simple ideal is 
to extend definition interval of the classical Bernstein 
basis functions from [0,1]  to [0, ]α  (0 1)α< ≤ . 
Inspired by the recursion property of the classical 
Bernstein basis functions, the basis functions of 
degree n ( 4)n ≥  with a shape parameter α can be 
generated on base of the cubic basis functions. 
Therefore, the cubic Bernstein basis functions with a 
shape parameter α are firstly constructed as below.  

Suppose the cubic basis functions are expressed as 
follows,                      

3,0 3,1 3,2 3,3( ) ( ) ( ) ( )f t f t f t f t    
2 31 t t t M =      (1) 

where 0 t α≤ ≤ , 0 1α< ≤ , and M  is an 
undetermined 4 4×  matrix. 

Derivation calculus to Eq. (1), then 

3,0 3,1 3,2 3,3( ) ( ) ( ) ( )f t f t f t f t′ ′ ′ ′     
20 1 2 3t t M =     (2) 

Because the cubic basis functions are hoped to 
satisfy the same properties with the classical cubic 
Bernstein basis functions at the end point, therefore, 
let 0t =  and t α=  in Eq. (1) and Eq. (2) 
respectively, then 

[ ] [ ]
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[ ] [ ]
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   (3) 

From Eq. (3), then 

2 3

2

1 0 0 0 1 0 0 0
0 0 0 1 1
3 3 0 0 0 1 0 0

0 0 3 3 0 1 2 3

M
α α α

α α

   
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   =
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   −   

   (4) 

Solving Eq. (4), then  

2 2

3 2 2 3

1 0 0 0
3 3 0 0

6 3 6 3 3 3

2 3 3 3 3 2

M α α
α α α α

α α
α α α α

 
 − 
 − −= − 
 

− − −  

     (5) 

Taking Eq. (5) to Eq. (1), the cubic basis functions 
can be expressed as follows, 
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2 3
3,0 2 3
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3,3 2 3

6 3 2 3( ) 1 3
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

  (6) 

where 0 t α≤ ≤ , 0 1α< ≤ . 
The cubic basis functions expressed as Eq. (6) can 

be reparametrized to the basis functions by 
3, 3,( ) ( )i ib u f uα= ( 0,1,2,3)i = , then 3, ( )ib u  

( 0,1,2,3)i =  is defined on a fixed interval [0,1]u∈  
which can be defined as follows. 

Definition 1 The following four functions of u are 
called the cubic Bernstein basis functions with a 
shape parameter α (cubic α-Bernstein basis functions 
for short),    
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2 3
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 = − + −

  (7) 

where 0 1u≤ ≤ , 0 1α< ≤ . 
Eq. (7) can be rewritten as follows, 

( ) ( ) ( )
( )
( )

( )( )
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2
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2
3,3

( ) 1 1 3 1

( ) 3 1
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α
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
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=  + − −   

   (8) 

On base of the cubic α-Bernstein basis functions, 
the α-Bernstein basis functions of degree n ( 4)n ≥  
can be generated according to the recursion property 
of the classical Bernstein basis functions. Then the 
α-Bernstein basis functions of degree n ( 4)n ≥  can 
be defined as follows. 

Definition 2 The following functions of u are 
called the α-Bernstein basis functions of degree 
n ( 4)n ≥ , 

, 1, 1, 1( ) (1 ) ( ) ( )n i n i n ib u u b u ub u− − −= − +        (9) 
where 0 1u≤ ≤ , 0 1α< ≤ , 0,1,2, ,i n=  , and 
setting 1, 1 1,( ) ( ) 0n n nb u b u− − −= ≡ . 

By simple deduction, expression of the 
α-Bernstein basis functions of degree n ( 4)n ≥  can 
be got from Eq. (8) and Eq. (9). For example, when 

4n = , the quartic α-Bernstein basis functions can be 
expressed as follows, 
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α
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α
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α

 = − − + −  
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

= − + + − −   
 = + − −  

  (10) 

where 0 1u≤ ≤ , 0 1α< ≤ .  
2.2 Properties of the basis functions 

For the sake of convenience, the α-Bernstein basis 
functions of degree n ( 3)n ≥  are called α-Bernstein 
basis functions for short in the following discussion. 

From the construction process of the α-Bernstein 
basis functions, some properties of the basis 
functions can be obtained as follows. 

Theorem 1 The α-Bernstein basis functions 
defined as Eq. (8) and Eq. (9) have the following 
properties, 

(a) Non-negativity: , ( ) 0n ib u ≥  ( 0,1,2, , )i n=  . 

(b) Normalization: ,
0

( ) 1
n

n i
i

b u
=

≡∑ . 

(c) Symmetry:  
, ,( ) (1 )n i n n ib u b u−= −  ( 0,1,2, , )i n=  . 

(d) Properties at the endpoints: 
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,
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3 3 ,
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n i

n i n
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α

− + =
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 ≠ −

. 

Proof Mathematical induction is used to prove this 
theorem. 

(a) When 3n = , from Eq. (8), 3, ( ) 0ib u ≥  
( 0,1,2,3)i =  follow obviously because 1 0u− ≥  
and 1 0α− ≥ . Suppose that the α-Bernstein basis 
functions satisfy non-negative for n m= . When 

1n m= + , from Eq. (9), then 
1, , , 1( ) (1 ) ( ) ( )m i m i m ib u u b u ub u+ −= − +  

( 0,1,2, , 1i m= + ) 
By the inductive hypothesis and the fact that 

1 0u− ≥ , 0u ≥ , it is obviously that 1, ( ) 0m ib u+ ≥  
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( 0,1,2, , 1)i m= + .  
(b) When 3n = , from Eq. (7), it is easy to 

conclude that 
3

3,
0

( ) 1i
i

b u
=

≡∑ . Suppose that the 

α-Bernstein basis functions satisfy normalized for 
n m= . When 1n m= + , by the inductive hypothesis 
and Eq. (9), then 

1

1, ,
0 0

( ) (1 ) ( )
m m

m i m i
i i

b u u b u
+

+
= =

= − +∑ ∑  

                  , 1
1

( ) 1 0
m

m i
i

u b u u u−
=

= − + ≡∑ . 

(c) When 3n = , the cubic α-Bernstein basis 
functions satisfy symmetry can be obtained by 
simple deduction from Eq. (8). Suppose that the 
α-Bernstein basis functions are symmetrical for 
n m= . When 1n m= + , by the inductive hypothesis 
and Eq. (9), then 

1, , , 1(1 ) (1 ) (1 ) (1 )m i m i m ib u ub u u b u+ −− = − + − −                    

, , 1 1, 1( ) (1 ) ( ) ( )m m i m m i m m iub u u b u b u− − + + − += + − = . 
(d) When 3n = , from Eq. (7), then 
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2
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′ = − + − + −

′ = − +


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 ′ = − + −

(11) 

By simple deduction from Eq. (7) and Eq. (11), 
then 

 3,
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i
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 , 3,

1, 3
(1)

0, 3i

i
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=  ≠
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3,

3 , 0
(0) 3 , 1

0, 2,3
i

i
b i

i

α
α
− =
′ = =
 =

, 3,

3 , 3
(1) 3 , 2

0, 0,1
i

i
b i

i

α
α

=
′ = − =
 =
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Suppose that the α-Bernstein basis functions hold 
the properties at the endpoints for n m= . When 

1n m= + , by the inductive hypothesis and Eq. (9), 
then 

1, ,

1, , 1

1, 0
(0) (0)

0, 0

1, 1
(1) (1)

0, 1

m i m i

m i m i

i
b b

i

i m
b b

i m

+

+ −

 =
= =  ≠ 


= + = =  ≠ +

    (12) 

From Eq. (9), then 
    1, , , , 1(0) (0) (0) (0)m i m i m i m ib b b b+ −′ ′= − + +    (13)                               

1, , , 1 , 1(1) (1) (1) (1)m i m i m i m ib b b b+ − −′ ′= − + +    (14) 
By the inductive hypothesis and Eq. (12), the 

following conclusions can be got from Eq. (13), 
(i) If 0i = , then 

1,0 ,0 ,0(0) (0) (0)m m mb b b+′ ′= − +  
2 3 (( 1) 3 3 )m mα α= − + − = − + − + . 

(ii) If 1i = , then 
  1,1 ,1 ,1 ,0(0) (0) (0) (0)m m m mb b b b+′ ′= − + +  

2 3 ( 1) 3 3m mα α= − + = + − + . 
(iii) If 0,1i ≠ , then 1, (0) 0m ib +′ = . 
Similarly, the following conclusions can be got 

from Eq. (14), 
(i) If 1i m= + , then 1, 1(1) ( 1) 3 3m mb m α+ +′ = + − + . 
(ii) If i m= , then 1, (1) (( 1) 3 3 )m mb m α+′ = − + − + . 
(iii) If , 1i m m≠ + , then 1, (1) 0m ib +′ = .  
Theorem 1 shows that the α-Bernstein basis 

functions have most properties of the classical 
Bernstein basis functions. Particularly, the 
α-Bernstein basis functions would degenerate to the 
classical Bernstein basis functions for 1α = . Hence, 
the α-Bernstein basis functions are simple extensions 
of the classical Bernstein basis functions.  
 

3 α-Bézier curve  
3.1 Definition and properties of the curve 

On base of α-Bernstein basis functions, the 
corresponding Bézier-like curve can be naturally 
defined as follows. 

Definition 3 Given control points iP  
( 0,1,2, , )i n=   in 2R  or 3R , for 0 1u≤ ≤ , 
0 1α< ≤ ,  

,
0

( ) ( )
n

n n i i
i

u b u
=

=∑r P             (15) 

is called α-Bézier curve, where , ( )n ib u  
( 0,1,2, , ; 3)i n n= ≥  are the α-Bernstein basis 
functions expressed as Eq. (8) and Eq. (9). 

From Theorem 1, the α-Bézier curve defined as Eq. 
(15) has the following properties, 

(a) Terminal properties: From the properties at the 
endpoints of the α-Bernstein basis functions, then 

0(0)n =r P , (1)n n=r P ;  
1 0(0) ( 3 3 )( )n n α′ = − + −r P P , 

1(1) ( 3 3 )( )n n nn α −′ = − + −r P P . 
Hence, the α-Bézier curve interpolates the first and 

the end control points and tangent to the first and the 
end edges of the control polygon. 
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(b) Symmetry: From the symmetry of the 
α-Bernstein basis functions, then 

0 1 2 ,
0

( ; , , , , ) ( )
n

n n n i i
i

u b u
=

=∑r P P P P P  

, ,
0 0

(1 ) (1 )
n n

n n i i n j n j
i j

b u b u− −
= =

= − = −∑ ∑P P  

1 2 0(1 ; , , , , )n n n nu − −= − r P P P P . 
Hence, both iP ( 0,1,2, , )i n=   and n i−P  

( 0,1,2, , )i n=   define the same α-Bézier curve in a 
different parameterization for the same shape 
parameter α (0 1)α< ≤ .       

(c) Geometric invariant and affine invariance: Due 
to parametric form of the α-Bézier curve, the location 
and shape of the curve depend only on the control 
points iP ( 0,1,2, , )i n=   and the shape parameter 
α, regardless of the choice of coordinate system, i.e., 
the shape of the curve will keep unchanged after 
rotation and coordinate translation. In addition, after 
implementing affine transformation to the control 
points, the new curve will correspond to the same 
affine transformation curve.    

(d) Convex hull property: Because the α-Bernstein 
basis functions are nonnegative and sum to one, the 
α-Bézier curve lies inside its control polygons span 
by the control points iP ( 0,1,2, , )i n=  . 

It is clear that the α-Bézier curve has most 
properties of the classical Bézier curve. Particularly, 
the α-Bézier curve would degenerate to the classical 
Bézier curve for 1α = . Hence, the α-Bézier curve is 
an extension of the classical Bézier curve.  

Remark 1 In contrast with some existing similar 
models, the α-Bézier curve presented in this work 
has the following characteristic, 

(a) In contrast with the non-polynomial Bézier-like 
curves with shape parameters (such as [1-6]), the 
α-Bézier curve is polynomial. Hence, structure of the 
α-Bézier curve is simpler than those models based on 
the non-polynomial basis functions. 

(b) In contrast with the high-degree Bézier-like 
curves with shape parameters (such as [7-11]),  the 
α-Bézier curve is still a polynomial of the same 
degree. Hence, formula complexity of the α-Bézier 
curve is simpler than those models constructed by 
increasing the degree of the Bernstein basis 
functions. 

(c) In contract with the Bézier-like curve with 
multiple shape parameters of the same degree [12], 

the α-Bézier curve satisfies strict symmetry that the 
classical Bézier curve has. Hence, the α-Bézier curve 
is more suitable in practical engineering than the 
models that did not satisfy strict symmetry. 

(d) In contract with the Bézier-like curve of degree 
n with n-1 shape parameters [13], value range of the 
shape parameter of the α-Bézier curve is fixed, which 
makes more use-friendly operation for users.   
3.2 Effects of the shape parameter on the curve 

For fixed control points iP ( 0,1,2, , )i n=  , shape 
of the classical Bézier curve cannot be changed, 
while shape of the α-Bézier curve can be adjusted by 
altering value of the shape parameter α (0 1)α< ≤ . 

In order to discuss effects of the shape parameter α 
on the α-Bézier curve, a lemma is given firstly as 
follows. 

Lemma 1 The α-Bernstein basis functions defined 
as Eq. (8) and Eq. (9) satisfy that 

(a) ,0 ,
1 1 4 3
2 2 2n n n nb b α−   = =   

   
( 3)n ≥ . 

(b) There exist constants nc  such that  

,1 , 12 2

1 1 1 1 4 3
2 2 2 2 2n n n nn n nb b c α

−− −

−   − = − = ⋅   
   

 

( 3)n ≥ . 
(c) There exist constants ,n ik  such that  

, , ,2 2

1 2 1 2 4 3
2 2 2 2 2n i n n i n in n n

n nb b k α
−− −

− − −   − = − = ⋅   
   

( 2,3, , 2; 4)i n n= − ≥ . 
Proof From the symmetry of the α-Bernstein basis 

functions, then 

,0 ,
1 1
2 2n n nb b   =   

   
( 3)n ≥ , 

,1 , 12 2

1 1 1 1
2 2 2 2n n nn nb b −− −

   − = −   
   

( 3)n ≥ , 

, ,2 2

1 2 1 2
2 2 2 2n i n n in n

n nb b −− −

− −   − = −   
   
( 2,3, , 2; 4)i n n= − ≥ . 

Hence, only the other half of every equation 
needed to be proved. Mathematical induction is used 
to prove. 

(a) When 3n = , from Eq. (8), it is easy to 

conclude that 3,0
1 4 3
2 8

b α−  = 
 

. Suppose that 
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,0
1 4 3
2 2m mb α−  = 

 
 for n m= . When 1n m= + , by 

the inductive hypothesis and Eq. (9), then 

1,0 ,0 1

1 1 1 4 3
2 2 2 2m m mb b α

+ +

−   = =   
   

. 

(b) When 3n = , from Eq. (8), it is easy to 

conclude that 3,1 1
1 1 4 3
2 2 8

b c α−  − = ⋅ 
 

, where 

1 1c = − . For n m= , suppose that there exist 

constants mc  such that ,1 2

1 1 4 3
2 2 2m mm mb c α

−

−  − = ⋅ 
 

. 

When 1n m= + , by the inductive hypothesis and Eq. 
(9), then 

1,1 ,1 ,01 1

1 1 1 1 1 1 1
2 2 2 2 2 2 2m m mm mb b b+ − −

     − = + −     
     

  

       2 1

1 1 4 3 1 4 3 1
2 2 2 2 2 2mm m m mc α α

− −

− − = + ⋅ + ⋅ − 
 

 

                     1 1

4 3
2m mc α

+ +

−
= ⋅  

where 1 1m mc c+ = + . 
(c) When 4n = , then 2i = , from Eq. (10), it can 

conclude that  

4,2 4,2 4

1 2 3 1 4 3
2 4 8 2 2

b k αα −  − = − = ⋅ 
 

 

where 4,2 2k = − . For n m= , suppose that there 
exist constants ,m ik  such that  

, ,2

1 2 4 3
2 2 2m i m im m

mb k α
−

− −  − = ⋅ 
 

( 2,3, , 2)i m= − . 

When 1n m= + , from Eq. (9), then 

1, , , 11 1

1 1 1 1 1 1 1
2 2 2 2 2 2 2m i m i m im m

m mb b b+ −− −

− −     − = + −     
     

( 2,3, , 1)i m= − . 
By the inductive hypothesis and the results have 

been proved in (b), then 

1, ,1 2

1 1 1 2 4 3
2 2 2 2 2m i m im m m

m mb k α
+ − −

− − −   − = + ⋅   
   

 

    1,2 1 1

1 1 4 3 1 4 3
2 2 2 2 2m m im m m m

mc kα α
+− − +

− − − + + ⋅ − = ⋅ 
 

 

where 1, ,m i m i mk k c+ = + .   
On the base of Lemma 1, effects of the shape 

parameter α on α-Bézier curve approaching to its 
polygon can be shown as follows. 

Theorem 2 For fixed control points 
iP ( 0,1,2, , )i n=  , suppose iP ( 1,2, , 1)i n= −  lie 

on the same side of edge 0 nP P . The α-Bézier curve 

defined as Eq. (15) approaches closer to its control 
polygon as the shape parameter α increases. 

Proof When iP ( 1,2, , 1)i n= −  lie on the same 
side of edge 0 nP P , let 

1 2 3 2 1
2

( 2)( )
2

* n n
n

n − −
−

+ − + + + +
=

P P P P PP  (16) 

From Eq. (15) and Lemma 1, then 

,0 0
1 1
2 2n nb   − = +   

   
*r P P  

2

,1 1 ,2 2
2

1 1 1 2
2 2 2 2

n

n n i in n
i

nb b
−

− −
=

   −   − + −            
∑P P     

             , 1 1 ,2

1 1 1
2 2 2n n n n n nnb b− −−

    + − +        
P P          

    
2

0 1 , 1
2

4 3
2

n

n n i i n n nn
i

c k cα −

−
=

−  
= + + + + 

 
∑P P P P P (17) 

where 0 1α< ≤ , nc  and ,n ik are constants. 
Taking the norm in Eq. (17), then 

1
2n

  − 
 

*r P    

2

0 1 , 1
2

4 3
2

n

n n i i n n nn
i

c k cα −

−
=

−
= + + + +∑P P P P P     (18) 

When control points iP ( 0,1,2, , )i n=   are fixed, 
2

0 1 , 1
2

n

n n i i n n n
i

c k c
−

−
=

+ + + +∑P P P P P  in Eq. (18) would 

keep unchanged. Since 4 3
2n

α−  decreases as α  

increases, the α-Bézier curve defined as Eq. (15) 
approaches closer to its control polygon with the 
increase of α.   

Remark 2 For ease of understanding, set 
(0)

i i=P P , 
( ) ( )

( 1) 1

2

j j
j i i

i
+ ++

=
P PP , then Eq. (16) can be 

rewritten as follows, 
( 3) ( 3)

* 1 2

2

n n− −+
=

P PP          (19) 

By simple deduction, relations between *P  and 
iP ( 0,1,2, , )i n=   for α-Bézier curve of degree n 

( 3)n ≥  can be got from Eq. (19). For examples, 

when 3n = , * 1 2

2
+

=
P PP ; when 4n = , 

2 31 2

* 2 2
2

++
+

=

P PP P

P . 

When control points are fixed, effects of the shape 
parameter α on cubic α-Bézier curve and quartic 
α-Bézier curve is shown in Fig. 1 and Fig. 2 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Juncheng Li

E-ISSN: 2224-3488 87 Volume 14, 2018



respectively, where value of the shape parameter α is 
set for 0.1,0.2, ,0.9,1α =   respectively from 
outside to inside. 

 
Fig.1 Cubic α-Bézier curve for different α 

 
Fig. 2 Quartic α-Bézier curve for different α 

3.3 Splicing of the curve 
Given two segments of adjacent α-Bézier curves 

, , ,
0

( ) ( )
m

i m m j i j
j

t b t
=

=∑r P  and 1, , 1,
0

( ) ( )
n

i n n j i j
j

t b t+ +
=

=∑r P , 

where the former and the latter is a α-Bézier curve of 
degree m ( 3)m ≥ and degree n ( 3)n ≥  respectively. 
The shape parameter of , ( )i m tr  and 1, ( )i n t+r  is iα  
and 1iα +  respectively. 

Generally, , ( )i m tr  and 1, ( )i n t+r  would satisfy G1 
continuous if  

             , 1,

, 1,

(1) (0)
(1) (0)

i m i n

i m i nδ
+

+

=
 ′ ′=

r r
r r

           (20) 

where δ  is a given constant. Furthermore, , ( )i m tr  
and 1, ( )i n t+r  would satisfy C1 continuous if 1δ =  
in Eq. (20). Then, the splicing conditions of , ( )i m tr  
and 1, ( )i n t+r  satisfying G1 and C1 continuous can be 
shown as follows. 

Theorem 3 Two segments of adjacent α-Bézier 
curves , ( )i m tr  and 1, ( )i n t+r  would satisfy G1 
continuous if , 1i m−P , , 1,0i m i+=P P  and 1,1i+P  are 
collinear. Furthermore, , ( )i m tr  and 1, ( )i n t+r  would 

satisfy C1 continuous if 13 3
3 3

i
i

i

n
m

α
λ

α
+− +
=

− +
, where iλ  

is a given constant.  
Proof By the terminal properties of the α-Bézier 

curve, then 

, ,

, , , 1

1, 1,0

1, 1 1,1 1,0

(1)
(1) ( 3 3 )( )
(0)
(0) ( 3 3 )( )

i m i m

i m i i m i m

i n i

i n i i i

m

n

α

α

−

+ +

+ + + +

=
 ′ = − + −
 =
 ′ = − + −

r P
r P P
r P
r P P

  (21) 

If , 1i m−P , , 1,0i m i+=P P  and 1,1i+P  are collinear, 
there would exit a constant iλ  such that 

, . 1 1,1 1,0( )i m i m i i iλ− + +− = −P P P P        (22) 
From Eq. (21) and Eq. (22), then 

, 1,

, 1,
1

(1) (0)
3 3(1) (0)

3 3

i m i n

i
i m i i n

i

m
n

α
λ

α

+

+
+

=


− + ′ ′= − +

r r

r r
    (23) 

Eq. (23) shows that the two adjacent curves satisfy 
G1 continuous. 

Furthermore, if 13 3
3 3

i
i

i

n
m

α
λ

α
+− +
=

− +
, viz., 

1

3 3 1
3 3

i
i

i

m
n

α
λ

α +

− +
=

− +
, Eq. (23) would be rewritten as 

follows, 
, 1,

, 1,

(1) (0)
(1) (0)

i m i n

i m i n

+

+

=
 ′ ′=

r r
r r

           (24) 

Eq. (24) shows that the two adjacent curves satisfy 
C1 continuous.   

Suppose a whole G1 continuous curve is spliced by 
a number of α-Bézier curves of different degree. 
From Theorem 3, only shape of the ith curve 
segment would be locally adjusted if altering value 
of the shape parameter iα , while shapes of the other 
curve segments would keep unchanged. When the 
shape parameters of all the curve segments are set for 

iα α= , then shape of the whole G1 continuous curve 
can be globally adjusted by altering value of the 
shape parameter α.  

For choosing proper control points, local 
adjustment of the shape parameter 2α  on a whole 
G1 continuous curve spliced by three segments of 
α-Bézier curves is shown in Fig. 3, where the first 
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and the third curve segments are quartic, and the 
second curve segment is cubic. In Fig. 3, the shape 
parameters of the first and the third curve segments 
are set for 1 3 0.5α α= = , the shape parameters of the 
second curve segments is set for 2 0.6α = (dotted 
lines), 2 0.8α = (solid lines) and 2 1.0α = (dashed 
lines) respectively. 

 
Fig. 3 Local adjustment of a whole G1 continuous 

curve 
For the same control points in Fig. 3, global 

adjustment of the shape parameter iα α= ( 1,2,3)i =  
on the whole G1 continuous curve is shown in Fig. 4, 
where the shape parameter α is set for 

0.3α = (dotted lines), 0.6α =  (solid lines) and 
0.9α = (dashed lines) respectively. 

 
Fig. 4 Global adjustment of a whole G1 continuous 

curve 
Suppose a whole C1 continuous curve is spliced by 

a number of α-Bézier curves of different degree. 
From Theorem 3, for the whole curve satisfying C1 
continuous, values of the shape parameters of the 
other curve segments would change if altering value 
of the shape parameter of the ith curve segment. 
Then, shape of the whole C1 continuous curve would 

be globally adjusted.  
For choosing proper control points, global 

adjustment of the shape parameter iα α= ( 1,2,3)i =  
on a whole C1 continuous curve spliced by three 
segments of cubic α-Bézier curves is shown in Fig. 5, 
where the shape parameter α is set for 

0.6α = (dotted lines), 0.8α =  (solid lines) and 
1.0α = (dashed lines) respectively. 

 
Fig. 5 Global adjustment of a whole C1 continuous 

curve 
 

4 Conclusion 
The Bernstein basis functions with a shape 

parameter presented in this paper have the same 
properties to those of the classical Bernstein basis 
functions. The Bézier-like curve defined by the 
introduced basis functions not only has most 
properties of the classical Bézier curve, but also can 
be easily adjusted by altering value of the shape 
parameter. In construct with other similar models, the 
Bézier-like curve presented in this paper is still a 
polynomial model of the same degree. Hence, it has 
simpler structure. Because there is nearly no 
difference in structure between the proposed 
Bézier-like curve and the classical Bézier curve, it is 
no difficult to adopt the proposed Bézier-like curve 
to a CAD/CAM system that already uses the classical 
Bézier curve.  

For practical applications of the proposed 
Bézier-like curve in geometric modeling, it is clear 
that some special algorithms need to be established. 
Furthermore, the corresponding Bézier-like surface 
also needs to be discussed. Some interesting results 
in this area will be presented in the following study. 
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